Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.386
Filtrar
1.
J Neurosci Res ; 102(3): e25316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38415926

RESUMO

Aberrant neovascularization is the most common feature in retinopathy of prematurity (ROP), which leads to the retinal detachment and visual defects in neonates with a low gestational age eventually. Understanding the regulation of inappropriate angiogenic signaling benefits individuals at-risk. Recently, neural activity originating from the specific neural activity has been considered to contribute to retinal angiogenesis. Here, we explored the impact of cone cell dysfunction on oxygen-induced retinopathy (OIR), a mouse model commonly employed to understand retinal diseases associated with abnormal blood vessel growth, using the Gnat2cpfl3 (cone photoreceptor function loss-3) strain of mice (regardless of the sex), which is known for its inherent cone cell dysfunction. We found that the retinal avascular area, hypoxic area, and neovascular area were significantly attenuated in Gnat2cpfl3 OIR mice compared to those in C57BL/6 OIR mice. Moreover, the HIF-1α/VEGF axis was also reduced in Gnat2cpfl3 OIR mice. Collectively, our results indicated that cone cell dysfunction, as observed in Gnat2cpfl3 OIR mice, leads to attenuated retinal neovascularization. This finding suggests that retinal neural activity may precede and potentially influence the onset of pathological neovascularization.


Assuntos
Oftalmopatias , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones , Oxigênio/toxicidade , Neovascularização Patológica , Modelos Animais de Doenças
2.
Curr Eye Res ; 49(4): 425-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38152854

RESUMO

PURPOSE: To determine the retinal transcriptomic differences underlying the oxygen-induced retinopathy phenotypes between Sprague Dawley rat pups from two commonly used commercial vendors. This will allow us to discover genes and pathways that may be related to differences in disease severity in similarly aged premature babies and suggest possible new treatment approaches. METHODS: We analyzed retinal vascular morphometry and transcriptomes from Sprague Dawley rat pups from Charles River Laboratories and Envigo (previously Harlan). Room air control and oxygen-induced retinopathy groups were compared. Oxygen-induced retinopathy was induced with the rat 50/10 model. RESULTS: Pups from Charles River Laboratories developed a more severe oxygen-induced retinopathy phenotype, with 3.6-fold larger percent avascular area at P15 and twofold larger % neovascular area at P20 than pups from Envigo. Changes in retinal transcriptomes of rat pups from both vendors were substantial at baseline and in response to oxygen-induced retinopathy. Baseline differences centered on activated pathways of neuronal development in Charles River Laboratories pups. In response to oxygen-induced retinopathy, during the neovascular phase, retinas from Charles River Laboratories pups exhibited activation of pathways regulating necrosis, neuroinflammation, and interferon signaling, supporting the observed increase of neovascularization. Conversely, retinas from Envigo pups showed decreased necrosis and increased focal adhesion kinase signaling, supporting more normal vascular development. Comparing oxygen-induced retinopathy transcriptomes at P15 to those at P20, canonical pathways such as phosphate and tensin homolog, interferon, and coordinated lysosomal expression and regulation element signaling were identified, highlighting potential novel mechanistic targets for future research. CONCLUSION: Transcriptomic profiles differ substantially between rat pup retinas from Charles River Laboratories and Envigo at baseline and in response to oxygen-induced retinopathy, providing insight into vascular morphologic differences. Comparing transcriptomes identified new pathways for further research in oxygen-induced retinopathy pathogenesis and increased scientific rigor of this model.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Ratos , Animais , Oxigênio/toxicidade , Ratos Sprague-Dawley , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/genética , Transcriptoma , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Animais Recém-Nascidos , Necrose/complicações , Necrose/patologia , Interferons , Modelos Animais de Doenças , Vasos Retinianos/patologia
3.
Microvasc Res ; 151: 104611, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774941

RESUMO

Pathological neovascularization is the hallmark of many vascular oculopathies. There is still a great deal of uncertainty surrounding retinal neovascularization research. A working hypothesis that astrocytic Yes-associated protein (YAP) act as a key factor in retinal neovascularization was proposed. And our study was conducted to verified this hypothesis. In vivo, we successfully generated mice deficient in YAP in astrocytes (YAPf/f GFAP-Cre mice) and set up oxygen-induced retinopathy (OIR) model. Pathological neovascularization was evaluated by immunofluorescence staining and western blotting. In vitro, cultured retinal astrocytes were transfected with YAP siRNA. Enzyme-linked immunosorbent assay (ELISA) and western blot were used to determine the proteins in the supernatants and cells. The results showed that YAP was upregulated and activated in the OIR mice retinas. Conditional ablation of YAP aggravated pathological neovascularization, along with the upregulation of vascular endothelial growth factor A (VEGF-A) and monocyte chemoattractant protein-1 (MCP-1). Studies in vitro confirmed that the knockdown of YAP in astrocytes lead to increases in VEGF-A and MCP-1 levels, thus enhancing pro-angiogenic capability of YAP-deficit astrocytes. In conclusion, astrocytic YAP alleviates retinal pathological angiogenesis by inhibiting the over-activation of astrocytes, which suppresses excessive VEGF-A production and neuroinflammation.


Assuntos
Neovascularização Retiniana , Animais , Camundongos , Neovascularização Retiniana/metabolismo , Oxigênio/toxicidade , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo , Proteínas de Sinalização YAP , Astrócitos/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Animais Recém-Nascidos
4.
Invest Ophthalmol Vis Sci ; 64(15): 46, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153746

RESUMO

Purpose: Retinal neovascularization (RNV) is the leading cause of vision loss in diseases like proliferative diabetic retinopathy (PDR). A significant failure rate of current treatments indicates the need for novel treatment targets. Animal models are crucial in this process, but current diabetic retinopathy models do not develop RNV. Although the nondiabetic oxygen-induced retinopathy (OIR) mouse model is used to study RNV development, it is largely unknown how closely it resembles human PDR. Methods: We therefore performed RNA sequencing on murine (C57BL/6J) OIR retinas (n = 14) and human PDR RNV membranes (n = 7) extracted during vitrectomy, each with reference to control tissue (n=13/10). Differentially expressed genes (DEG) and associated biological processes were analyzed and compared between human and murine RNV to assess molecular overlap and identify phylogenetically conserved factors. Results: In total, 213 murine- and 1223 human-specific factors were upregulated with a small overlap of 94 DEG (7% of human DEG), although similar biological processes such as angiogenesis, regulation of immune response, and extracellular matrix organization were activated in both species. Phylogenetically conserved mediators included ANGPT2, S100A8, MCAM, EDNRA, and CCR7. Conclusions: Even though few individual genes were upregulated simultaneously in both species, similar biological processes appeared to be activated. These findings demonstrate the potential and limitations of the OIR model to study human PDR and identify phylogenetically conserved potential treatment targets for PDR.


Assuntos
Retinopatia Diabética , Doenças Retinianas , Neovascularização Retiniana , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/genética , Retinopatia Diabética/genética , Modelos Animais de Doenças , Oxigênio/toxicidade
5.
Sci Rep ; 13(1): 13319, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587267

RESUMO

Retinopathy of Prematurity (ROP) is a multifactorial disease characterized by abnormal retinal vascular growth in premature infants, which is one of the leading causes of childhood blindness. Lactic acid metabolism may play an imperative role in the development of ROP, but there are still few relevant studies. Our team use a dataset GSE158799 contained 284 genes in 3 P17_OIR mice and 3 P30_OIR mice to identify 41 potentially differentially expressed lactate metabolism-related genes (LMRGs) related to ROP. Then through bioinformatics analysis, we strive to reveal the interaction, the enriched pathways and the immune cell infiltration among these LMRGs, and predict their functions and internal mechanisms. These DEGs may regulate lactate metabolism, leading to the changes of metabolism and immunity, thereby inducing the development of ROP. Our results will expand our understanding of the intrinsic mechanism of ROP and may be helpful for the directions for treatment of ROP in the future.


Assuntos
Regulação da Expressão Gênica , Retinopatia da Prematuridade , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/metabolismo , Oxigênio/toxicidade , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ácido Láctico/metabolismo , Transdução de Sinais
6.
Exp Eye Res ; 233: 109547, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348672

RESUMO

Despite decades of researches, the underlying mechanism of retinopathy of prematurity (ROP) remains unclear. The role of Sirt2, which is involved in both angiogenesis and inflammation, both pivotal in ROP, was investigated in an animal model of ROP known as oxygen-induced retinopathy (OIR). Our study found that Sirt2 was overexpressed and colocalized with microglia in OIR. Furthermore, it demonstrated that the level of Sirt2 was upregulated in hypoxia microglia BV-2 in vitro. Subsequently, our results elucidated that administration of the Sirt2 antagonist AGK2 attenuated the avascular and neovascular area and downregulated the expression of IGF-1. The phosphorylation of Akt and the expression of IGF-1 were upregulated in hypoxia BV-2 and conditional media collected from BV-2 under hypoxia promoted the migration and tube formation of retinal capillary endothelial cells, which were suppressed with AGK2. Notably, our findings are the first to demonstrate the deleterious role of Sirt2 in ROP, as Sirt2 inhibition led to the downregulation of Akt/IGF-1 and ameliorated vasculopathy, ultimately improving visual function. These results suggest that Sirt2 may be a promising therapeutic target for ROP.


Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Humanos , Recém-Nascido , Camundongos , Retinopatia da Prematuridade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Insulin-Like I/efeitos adversos , Fator de Crescimento Insulin-Like I/metabolismo , Células Endoteliais/metabolismo , Sirtuína 2/genética , Neovascularização Retiniana/metabolismo , Oxigênio/toxicidade , Hipóxia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais Recém-Nascidos
7.
Invest Ophthalmol Vis Sci ; 64(4): 33, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37103008

RESUMO

Purpose: We examined the role of annexin A2 (A2) in the development of diabetic retinal vasculopathy by testing the effect of Anxa2 gene deletion as well as administration of anti-A2 antibodies on pericyte dropout and retinal neovascularization in diabetic Akita mice, and in mice subjected to oxygen-induced retinopathy. Methods: We analyzed diabetic Ins2AKITA mice with or without global deletion of Anxa2, as well as Ins2AKITA mice that received intravitreal anti-A2 IgG or control antibody at 2, 4, and 6 months, for retinal pericyte dropout at 7 months of age. In addition, we assessed the effect of intravitreal anti-A2 on oxygen-induced retinopathy (OIR) in neonatal mice by quantifying retinal neovascular and vaso-obliterative area, and by enumeration of neovascular tufts. Results: Both deletion of the Anxa2 gene and immunologic blockade of A2 prevented pericyte depletion in retinas of diabetic Ins2AKITA mice. Blockade of A2 also reduced vaso-obliteration and neovascularization in the OIR model of vascular proliferation. This effect was amplified when a combination of antivascular endothelial growth factor (VEGF) and anti-A2 antibodies was used. Conclusions: Therapeutic approaches that target A2, alone or in combination with anti-VEGF therapy, are effective in mice, and may also curtail the progression of retinal vascular disease in humans with diabetes.


Assuntos
Anexina A2 , Diabetes Mellitus , Retinopatia Diabética , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Anexina A2/uso terapêutico , Retinopatia Diabética/prevenção & controle , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Oxigênio/toxicidade , Oxigênio/metabolismo , Doenças Retinianas/metabolismo , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Invest Ophthalmol Vis Sci ; 64(4): 9, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37036416

RESUMO

Purpose: Premature infants at risk of retinopathy of prematurity (ROP) miss placental transfer of the carotenoids lutein (L) and zeaxanthin (Z) during the third trimester. We previously demonstrated that prenatal L and Z supplementation raised carotenoid levels in infants at birth in the Lutein and Zeaxanthin in Pregnancy (L-ZIP) study (NCT03750968). Based on their antioxidant effects and bioavailability, we hypothesized that prenatal maternal supplementation with macular carotenoids would reduce the risk of ROP. To test this hypothesis, we utilized "macular pigment mice" genetically engineered to take up L and Z into the retina in a model of oxygen-induced retinopathy (OIR). Methods: Pregnant Bco2-/- mice were divided into nine experimental subgroups based on the type of supplementation (L, Z, or placebo) and on the maternal supplementation start date corresponding to the three trimesters of human fetal development (E0, E11, and P1). Pups and nursing mothers were exposed to 75% O2 for 5 days (P7-P12) and returned to room air for 5 days (P12-P17). Pups were killed at P12 and P17, and their retinas were analyzed for vaso-obliteration and intravitreal neovascularization. Results: Pups of pregnant mice supplemented with L or Z had significant reductions in areas of vaso-obliteration and intravitreal neovascularization compared to placebo. Prenatal carotenoid supplementation starting at E0 or E11 was significantly more protective against OIR than postnatal supplementation starting at P1. Conclusions: Prenatal supplementation with L and Z was beneficial in a mouse OIR model. We recommend testing prenatal L and Z supplementation in future human clinical trials to prevent ROP.


Assuntos
Dioxigenases , Pigmento Macular , Retinopatia da Prematuridade , Humanos , Recém-Nascido , Lactente , Feminino , Animais , Gravidez , Camundongos , Luteína , Zeaxantinas , Oxigênio/toxicidade , Placenta , Retinopatia da Prematuridade/induzido quimicamente , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/prevenção & controle , Modelos Animais de Doenças , Suplementos Nutricionais
9.
Exp Eye Res ; 227: 109378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603796

RESUMO

HuR (also known as ELAV1), a ubiquitous RNA-binding protein, is implicated in the pathogenesis of diverse diseases via the mechanism of post-transcriptional regulation. Whether it is involved in pathological angiogenesis in oxygen-induced retinopathy is not clear. In this study, we detected HuR expression was increased in the retina of mouse model of oxygen-induced retinopathy (OIR) as well as in vascular endothelial cells exposed to hypoxia. With gain-of-function and loss-of-function studies using adenovirus infection, we found HuR over-expression promoted while HuR knockdown inhibited the migration, proliferation and tube formation of vascular endothelial cells. Moreover, HuR regulated the expression of VEGFA in vascular endothelial cells. We also found the retinal pathological angiogenesis in mouse OIR model was greatly reduced with HuR knockdown using recombinant AAV expressing HuR specific shRNA which was administered by intravitreal injection. The results of this study suggest HuR is involved in pathological angiogenesis via regulating angiogenic behaviors of endothelial cells, providing a potential target for the treatment of retinopathy of prematurity.


Assuntos
Proteína Semelhante a ELAV 1 , Oxigênio , Neovascularização Retiniana , Animais , Camundongos , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Oxigênio/toxicidade , Oxigênio/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Proteína Semelhante a ELAV 1/metabolismo
10.
Exp Eye Res ; 226: 109347, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502924

RESUMO

Retinopathy of prematurity (ROP) is a vision-threatening ocular disease that occurs in premature infants, but the underlying mechanism is still unclear. Since oxidative stress has been well documented in the ROP development, we aimed to investigate whether ferroptosis, a new type of cell death characterized by lipid peroxidation and iron overload, is also involved in ROP. We detected the lipid peroxidation, oxidative stress and the expression of ferroptosis markers in the retina of mouse model of oxygen-induced retinopathy. After ferroptosis inhibitor, ferrostatin-1, was administered by intravitreal injection, ferroptosis marker, lipid peroxidation, retinal vasculature and glial cell activation were examined. We found decreased expression of SLC7A11 and GPX4, increased expression of FTH1 and TFRC, as well as increase of lipid peroxidation in the retina of OIR mice. Ferrostatin-1 administration significantly reduced lipid peroxidation, and also reversed the change of ferroptosis marker. Neovascular area and avascular area were suppressed and the pathological vasculature changes including acellular vessels and ghost pericytes were decreased. Microglial cell and Müller cell activation was not evidently influenced by ferrostatin-1 treatment. Our findings suggest that ferroptosis is involved in the pathological angiogenesis and might be a promising target for ROP therapy.


Assuntos
Ferroptose , Neovascularização Patológica , Retinopatia da Prematuridade , Animais , Humanos , Recém-Nascido , Camundongos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Oxigênio/toxicidade , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Estresse Oxidativo
11.
Int Immunopharmacol ; 113(Pt A): 109386, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461593

RESUMO

IL-17D is a new member of the IL-17 family. Currently, it is believed that IL-17D can directly act on immune cells or may indirectly modulate immune responses by regulating cytokine expression. Herein, we hypothesized that IL-17D regulates the expression of chemokines in intestinal epithelial cells, in turn modulating the immune response within intestinal mucosa under hyperoxia. To explore this notion, newborn rats were divided into a hyperoxia group (85 % O2) and control group (21 % O2). Small intestinal tissues were obtained from neonatal rats at 3, 7, 10, and 14 days. Similarly, intestinal epithelial cells were treated by hyperoxia (85 % O2) as the hyperoxia group or were incubated under normal oxygen (21 % O2) as the control group. Finally, intestinal epithelial cells subjected to hyperoxia were treated with recombinant IL-17D and IL-17D antibodies for 24, 48, and 72 h. Immunohistochemistry, western blot, and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of chemokines and chemokine receptors in intestinal tissues of newborn rats and intestinal epithelial cells. We found that hyperoxia affected chemokine expression both in vivo and in vitro. Under hyperoxia, IL-17D promoted the expression of CCL2, CCL25, CCL28, and CCR9 in intestinal epithelial cells while downregulating CCR2, CCR5, CCL5, and CCL20. Our findings provide a basis for further study on the effects of hyperoxia-induced intestinal inflammation and intestinal injury.


Assuntos
Gastroenterite , Hiperóxia , Interleucina-27 , Mucosa Intestinal , Oxigênio , Animais , Ratos , Quimiocinas/imunologia , Células Epiteliais/imunologia , Gastroenterite/etiologia , Gastroenterite/imunologia , Hiperóxia/complicações , Hiperóxia/imunologia , Fatores Imunológicos , Interleucina-27/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Oxigênio/toxicidade , Receptores de Quimiocinas/imunologia
12.
Invest Ophthalmol Vis Sci ; 63(8): 9, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816041

RESUMO

Purpose: Retinal neovascularization is a major cause of blindness. This study aimed to investigate the effects of IL-19 and the underlying mechanisms in a mouse model of oxygen-induced retinopathy (OIR). Methods: C57BL/6J wild-type mice and IL-19 knockout (KO) mice were used to establish an OIR mouse model. Bone marrow-derived macrophages (BMDMs) with or without recombinant IL-19 (rIL-19) stimulation were injected intravitreally. Reverse transcription-quantitative polymerase chain reaction was used to determine the mRNA expressions. ELISA and western blotting were performed to assess the protein levels. Immunofluorescence staining was applied to assess retinal neovascularization. Human retinal endothelial cells (HRECs) stimulated with rIL-19 were cultured to evaluate the effects on cell proliferation and migration. Results: The level of IL-19 was significantly elevated at postnatal day 17 in OIR retinas. Both the avascular areas and pathological neovascular tufts were significantly increased in rIL-19-treated OIR retinas and suppressed in IL-19 KO retinas. IL-19 KO mice suppressed expression of ARG1, VEGFA, and pSTAT3. Moreover, BMDMs stimulated by rIL-19 enhanced that expression and suppressed the expression of inducible nitric oxide synthase (iNOS). The proliferation and migration of HRECs were significantly augmented by rIL-19. In addition, intravitreal injection of BMDMs stimulated by rIL-19 enhanced retinal neovascularization. Conclusions: These findings suggest that IL-19 enhances pathological neovascularization through a direct effect on microvascular endothelial cells and the promotion of M2 macrophage polarization. The inhibition of IL-19 may be a potential treatment for retinal neovascularization.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Oxigênio/toxicidade , Doenças Retinianas/metabolismo , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Invest Ophthalmol Vis Sci ; 63(6): 21, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35737379

RESUMO

Purpose: Abnormal angiogenesis is a defining feature in a couple of ocular neovascular diseases. The application of anti-VEGFA therapy has achieved certain benefits in the clinic, accompanying side effects and poor responsiveness in many patients. The present study investigated the role of irisin in retinal neovascularization. Methods: Western blot and quantitative PCR were used to determine irisin expression in the oxygen-induced retinopathy mice model. The pathological angiogenesis and inflammation index were examined after irisin administration. Primary retinal astrocytes were cultured and analyzed for VEGFA expression in vitro. Astrocyte-conditioned medium was collected for transwell assay and tube formation assay in human microvascular endothelial cells-1. Results: Irisin was downregulated in the oxygen-induced retinopathy mice retinae. Additional irisin attenuated pathological angiogenesis, inflammation, and apoptosis in vivo. In vitro, irisin decreased astrocyte VEGFA production, and the conditioned medium suppressed human microvascular endothelial cells-1 migration. Last, irisin inhibited hypoxia-inducible factor-2α, nuclear factor-κB, and pNF-κB (Phospho-Nuclear Factor-κB) expression. Conclusions: Irisin mitigates retinal pathological angiogenesis.Chinese Abstract.


Assuntos
Oxigênio , Neovascularização Retiniana , Animais , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibronectinas , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Neovascularização Patológica/tratamento farmacológico , Oxigênio/toxicidade , Neovascularização Retiniana/metabolismo
14.
Invest Ophthalmol Vis Sci ; 63(6): 13, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695808

RESUMO

Purpose: KC7F2 is a novel molecule compound that can inhibit the translation of hypoxia-inducible factor 1α (HIF1α). It has been reported to exhibit potential antiangiogenic effect. We hypothesized that KC7F2 could inhibit oxygen-induced retinal neovascularization (RNV). The purpose of this study was to investigate this assumption. Methods: Oxygen-induced retinopathy (OIR) models in C57BL/6J mice and Sprague-Dawley rats were used for in vivo study. After intraperitoneal injections of KC7F2, RNV was detected by immunofluorescence and hematoxylin and eosin staining. Retinal inflammation was explored by immunofluorescence. EdU incorporation assay, cell counting kit-8 assay, scratch test, transwell assay, and Matrigel assay were used to evaluate the effect of KC7F2 on the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVEC) induced by vascular endothelial growth factor (VEGF) in vitro. Protein expression was examined by Western blot. Results: KC7F2 treatment (10 mg/kg/d) in OIR mice significantly attenuated pathological neovascularization and decreased the number of preretinal neovascular cell nuclei, without changing the avascular area, which showed the same trends in OIR rats. Consistently, after the KC7F2 intervention (10 µM), cell proliferation was inhibited in VEGF-induced HUVEC, which was in agreement with the trend observed in the retinas of OIR mice. Meanwhile, KC7F2 suppressed VEGF-induced HUVEC migration and tube formation, and decreased the density of leukocytes and microglia colocalizing neovascular areas in the retinas. Moreover, the HIF1α-VEGF pathway activated in retinas of OIR mice and hypoxia-induced HUVEC, was suppressed by KC7F2 treatment. Conclusions: The current study revealed that KC7F2 was able to inhibit RNV effectively via HIF1α-VEGF pathway, suggesting that it might be an effective drug for RNV treatment.


Assuntos
Dissulfetos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neovascularização Retiniana , Retinopatia da Prematuridade , Sulfonamidas/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio/metabolismo , Oxigênio/toxicidade , Ratos , Ratos Sprague-Dawley , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Transl Vis Sci Technol ; 11(6): 17, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727188

RESUMO

Purpose: Semaphorin 3A (Sema3A) is an axonal guidance molecule that inhibits angiogenesis by vasorepulsion and blocks revascularization in the ischemic retina. BI-X is an intravitreal anti-Sema3A agent under clinical investigation in patients with proliferative diabetic retinopathy (PDR) and diabetic macular ischemia (DMI). Methods: Surface plasmon resonance was used to determine binding affinity of BI-X to human and murine Sema3A. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to assess effects of BI-X on cell permeability and cytoskeletal collapse induced by Sema3A. In vivo, intravitreal BI-X or an anti-trinitrophenol control antibody was administered in both eyes in mice with oxygen-induced retinopathy (OIR). Retinal flat mounts were prepared, and avascular area and tip cell density were determined using confocal laser-scanning microscopy. Results: Dissociation constants for BI-X binding to human and murine Sema3A were 29 pM and 27 pM, respectively. In vitro, BI-X prevented HRMEC permeability and cytoskeletal collapse induced by Sema3A. In vivo, BI-X increased tip cell density by 33% (P < 0.001) and reduced avascular area by 12% (not significant). A significant negative correlation was evident between avascular area and tip cell density (r2 = 0.4205, P < 0.0001). Conclusions: BI-X binds to human Sema3A with picomolar affinity and prevents cell permeability and cytoskeletal collapse in HRMECs. BI-X also enhances revascularization in mice with OIR. Translational Relevance: BI-X is a potent inhibitor of human Sema3A that improves revascularization in a murine model of OIR; BI-X is currently being investigated in patients with laser-treated PDR and DMI.


Assuntos
Citoesqueleto , Retinopatia Diabética , Doenças Retinianas , Animais , Contagem de Células , Permeabilidade da Membrana Celular , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Oxigênio/toxicidade , Permeabilidade , Retina , Semaforina-3A/metabolismo , Semaforina-3A/farmacologia
16.
Exp Eye Res ; 220: 109114, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584758

RESUMO

Retinal neovascular diseases are major causes of blindness worldwide. As a common epitranscriptomic modification of eukaryotic RNAs, N6-methyladenosine (m6A) is associated with the pathogenesis of many diseases, including angiogenesis, through the regulation of RNA metabolism and functions. The aim of this study was to identify m6A modifications of mRNAs and long noncoding RNAs (lncRNAs) and determine their potential roles in retinal neovascularization. The transcriptome-wide m6A profiles of mRNAs and lncRNAs in the retinal tissues of mice with oxygen-induced retinopathy (OIR) and controls were identified by microarray analysis of immunoprecipitated methylated RNAs. The m6A methylation levels of mRNAs and lncRNAs identified in the microarray data were validated by MeRIP-qPCR. A total of 1321 mRNAs (151 hypermethylated and 1170 hypomethylated) and 192 lncRNAs (15 hypermethylated and 177 hypomethylated) were differentially methylated with the m6A modification in OIR and control mice. Gene ontology analysis showed that hypermethylated mRNAs were enriched in the regulation of multicellular organismal process, intracellular organelle, and protein binding, while hypomethylated mRNAs were enriched in cellular metabolic process, intracellular process, and binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that hypermethylated mRNAs were involved in dopaminergic synapses, glutamatergic synapse, and PI3K-Akt signaling pathway, while hypomethylated mRNAs were involved in autophagy, ubiquitin-mediated proteolysis, and spliceosome. Moreover, the altered levels of m6A methylation of ANGPT2, GNG12, ROBO4, and ENSMUST00000153785 were validated by MeRIP-qPCR. The results revealed an altered m6A epitranscriptome in OIR retinas. These methylated RNAs may act as novel modulators and targets in retinal neovascularization.


Assuntos
RNA Longo não Codificante , Neovascularização Retiniana , Adenosina/análogos & derivados , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Oxigênio/toxicidade , Fosfatidilinositol 3-Quinases/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Neovascularização Retiniana/genética
17.
Biofactors ; 48(3): 683-698, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35080047

RESUMO

Retinal neovascularization (RNV) associated diseases typically exhibit pathological neovascularization and neurodegeneration. Wnt inhibitor factor 1 (WIF1) is a secreted Wnt antagonist that regulates angiogenesis. However, the significance of WIF1 in RNV associated disease has not been explicitly tested. In our study, we found that the WIF1 expressions were strongly downregulated in the vitreous of proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP). Similarly, retinal WIF1 expression was significantly downregulated in OIR mice, relative to normal mice at P17. After injection of WIF1 overexpression lentivirus into the vitreous of OIR mice, overexpressing WIF1 in OIR mice vitreous strongly reduced avascular areas and neovascular tufts, increased vessel branches, raised a-, b-waves and oscillatory potentials amplitudes on ERG, increased retinal thickness and the number of synapses in retina, normalized the Golgi, mitochondria, and outer segments of photoreceptors. Furthermore, overexpression WIF1 suppressed expressions of ß-catenin, vascular endothelial growth factor (VEGF), p-AKT and p-ERK, reduced retinal reactive oxygen species (ROS) and 4-HNE levels, improved autophagic flux, and mitigated apoptosis. In summary, WIF1 plays a key role in alleviating angiogenesis and in improving visual function in OIR mice by suppressing the Wnt/ß-catenin-VEGF signaling pathway and ROS levels. WIF1 is an excellent candidate for targeted therapy against RNV associated diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neovascularização Patológica , Oxigênio , Neovascularização Retiniana , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Oxigênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/genética
18.
Invest Ophthalmol Vis Sci ; 63(1): 37, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35084431

RESUMO

Purpose: The oxygen-induced retinal neovascularization mouse model closely approximates pathological changes associated with human retinal neovascularization-associated diseases, including retinopathies. We used this model and human retinal endothelial cells (HRECs) under hypoxia to explore the relationship between taurine upregulated gene-1 (TUG1), vascular endothelial growth factor (VEGF), and miR-299-3p on retinopathy of prematurity (ROP). Methods: An oxygen-induced retinopathy (OIR) mouse model was established; the mice were divided into a normal control group, OIR group, TUG1 control group (lentivirus control), and TUG1-knockdown group. The apoptosis of retinal cells was evaluated using a TUNEL assay. Angiogenic, apoptotic, and inflammatory factors were detected by Western blot, immunohistochemistry, and immunofluorescence analyses. HRECs were cultured under hypoxia and assessed for VEGF expression, apoptosis, tubule formation, and migration ability. The relationship between TUG1, VEGF, and miR-299-3p was detected via a dual luciferase reporter gene assay. Results: Intravitreal injection of TUG1 lentivirus reduced the inflammatory response in the mouse retinal tissue and markedly reduced pathological changes in the retina. Overexpression of miR-299 in HRECs reduced the apoptosis rate, tube formation, and migration ability of hypoxia-treated cells, thereby inhibiting the formation of new blood vessels. The dual luciferase reporter gene assay suggested that miR-299 has binding sites for TUG1 and VEGF. Conclusions: TUG1 reduces the expression of VEGFA by competitively adsorbing miR-299-3p and facilitates the regulation of retinal neovascularization, suggesting that it may serve as a new therapeutic target for retinal neovascular diseases.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Neovascularização Retiniana/genética , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Oxigênio/toxicidade , RNA Longo não Codificante/biossíntese , Neovascularização Retiniana/induzido quimicamente , Neovascularização Retiniana/metabolismo
19.
Exp Eye Res ; 215: 108908, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954204

RESUMO

Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression.


Assuntos
Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Modelos Animais de Doenças , Humanos , Hiperóxia/complicações , Recém-Nascido , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio/toxicidade , Neovascularização Retiniana/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/prevenção & controle
20.
Curr Eye Res ; 47(4): 579-589, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34894941

RESUMO

PURPOSE: Retinal Neovascularization (RNV) is a pathological characteristic of ocular diseases. Annexin A2 (ANXA2) plays important roles in RNV while the mechanism remains unclear. The study aimed to explore relationship between ANXA2 and PI3K/AKT signaling pathway in RNV. METHODS: We used human retinal vascular endothelial cells (HRECs) and oxygen-induced retinopathy (OIR) mice model to show ANXA2 can promote the development of RNV through PI3K/AKT signaling pathway. We divided HRECs into six groups by infecting lentivirus containing appropriate plasmid and adding corresponding solution. Assays showing ability of HRECs were performed in vitro. Mice were randomly divided into three groups and treated accordingly. RESULTS: Expression of ANXA2 and activity of PI3K/AKT signaling pathway in HRECs were detected. RNV and expression of ANXA2 in mice retinas were detected. Results showed that ANXA2 expression is positively related with RNV-forming ability of HRECs in vitro and development of RNV in vivo while low activity of PI3K/AKT signaling pathway could attenuate the role of ANXA2. CONCLUSIONS: We can make ANXA2 and PI3K/ AKT signaling pathway as a promising target for the regulation of pathological neovascularization of the retina, which also provides a novel idea for effective prevention and treatment of diseases related to RNV in future.


Assuntos
Anexina A2 , Neovascularização Retiniana , Animais , Anexina A2/metabolismo , Anexina A2/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos , Oxigênio/metabolismo , Oxigênio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Retiniana/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA